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A method for the approximate solution of the internal problem of nonstationary 
heat and mass conductivity is elucidated which is based on a rational fraction 
mode of approximating transcendental functions. Computational formulas are pre- 
sented for one-dimensional plates, cylinders, and spheres. 

The extensive application of the heat-conduction equations to model the most diverse 
technological, thermal, electrical, and other processes predetermines the need to develop 
engineering methods for their solution that would assure adequate accuracy for practical pur- 
poses. 

Inverse problems that are of great applied value can also be solved efficiently by ap- 
proximate methods. 

The main difficulty in performing investigations is in solving the internal problem [i] 
that sets up a relationship between the functions inside the body volume U(r, t) and on the 
surface Un(R, t) since the process is described by partial differential equations with bound- 
ary conditions of the first kind. The dependence of Un(R, t) on the source of perturbations 
Uc(t) (external problem) is modeled in simple form as a rule. Consequently, it is necessary 
to have primarily an approximate solution of the internal problem. 

If the Laplace transform is used in a linear formulation, then its exact solution has 
the form 

L [U (r, 0 - -  Uo (r, O)l = ~ (r, S) �9 L IU~ (R, 0 - -  U~o (R, 0)], (1)  

where U0, Un0 are initial conditions and S(r, S) is the transfer function. 

It is shown in [2] that utilization of the concepts and properties of transfer functions 
substantially extends the possibilities of heat- and mass-transfer analysis. 

As is known, S(r, S) is found considerably more simply than the original ~(r, t), the 
pulse transfer function, which indeed yields the solution of the problem in the form of the 
integral 

t 

U(r, t) = Uo(r, O) + ~[U~(R, x) - -  U~o(R, O)l~(r,  t--x)dx. (2)  
0 

The functions S(r, S) are transcendental, and have an infinite number of poles on the negative 
semiaxis of the complex variable S, which yields an infinite series with exponential terms 
upon going over to ~(r, t). The construction and analysis of this series indeed comprises the 
fundamental complexity of the exact solution. The search for an approximate solution is 
therefore to approximate the exact transfer function by a simpler expression Sap(r, S). 

Such methods have been developed in automatic regulationtheory. In particular, an ap- 
proximation method based on analyzing the imaginary-frequency characteristics (IFC) of the 
transfer function has been proposed in [3]. The IFC is the curve obtained in slitting S(r, 
S) along the real semiaxis of the variable S. It is proved in [3] that the error in ~ap(r, t) 
does not exceed the error in approximating the "exact" function ~(r, S) by its approximate 
expression Sap(r, S = g) (where 0 ~ g s ~ are real numbers), if ~(r, t) contains no high- 
frequency components. As a rule, the functions ~(r, t) describing the heat and mass-transfer 
processes do not generally contain harmonic terms [4] and, consequently, they satisfy the 
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Fig. i. Imaginary-frequency characteristics for the mean 
temperature of a plate ( 1 ) ,  c y l i n d e r  ( 2 ) ,  s p h e r e  ( 3 ) ,  
exactly (a) and approximately (b). 

TABLE i. Values of the Coefficients 

Plate 
Cytinder 
Sphere 

Body o A B c 

0,43 
0,1836 
0,1128 

0,1 
0,0856 
0,0461 

0,0i 
0,00184 
0,0011 

requirement mentioned. The IFC for $(r, S = g) has a monotonically decreasing aperiodic form 
and it is expedient to take the approximating function ~ap(r, S) in the rational fraction 
form 

~ap(r ,  S) = D(r)  1 + B ( r )  S . ( 3 )  
1 + A (r)S -~ C(r)S~ 

If B = C = 0 is taken, then we obtain the well-known quasistationary model by which it is 
impossible to describe satisfactorily both the low- and the high-frequency spectral ranges 
of the operator $(r, S) and consequently, such approximations have significant errors in the 
case of large transient velocities. The second-order model (3) permits obtaining a solution 
with 3-5% error in the whole frequency range. 

The coefficients A-D are found by sampling from the minimal deviation condition for the 
curves ~(r, g) and Sap(r, ~), particularly in the domain of strong variations (close to the 
origin). It is here desirable to utilize the equality of these functions and their first 
derivatives at g = 0. It is recommended [3] to use the least-square deviation method to 
sample the coefficients. 

As the original of (3), the pulse-transfer function has the form 

where 

q)ap (r, t) = bl exp (-- Sit) H- b2 exp (--S,t),  (4) 

b I 

$1.2 = A G  Y A - ; - -  4C . 
2C 

D 1- -BS1  D S ~ B - -  1 
; b~-- 

C S~ --- $1 C 52 - -  S1 

The first term describes the low-frequency domain (regular regimes) and the second the high- 
frequency domain. It is indubitable that utilization of (4) in (2) in place of the infinite 
series will substantially simplify the analysis of transients. In investigating nonstationary 

]e 
processes, it is useful to compute the mean function U m ----~! UdV over the volume element 

of V, that governs the change in the thermal or mass fluxes, for which the appropriate inte- 
gration must be performed in (i). As an illustration, values of the coefficients A-D are 
given in the table for the functions connecting Um and Un for a one-dimensional symmetric 
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Fig. 2. Change in the mean temperature for a unit step in 
the surface temperature of a plate (i), cylinder (2), and 
sphere (3), exactly (a) and approximately (b). 

cylinder ~ and sphere ~sph 3 (here plate 
VN [ J ~, ~ m ( /~ )  s 

t h e  F o u r i e r  c r i t e r i o n  was t a k e n  as  t h e  t i m e ) .  

E x a c t  and a p p r o x i m a t e  IFC f o r  t h e s e  c a s e s  a r e  p r e s e n t e d  in  F i g .  1, and t h e  c o r r e s p o n d i n g  
t r a n s i e n t  c u r v e s  f o r  jump p e r t u r b a t i o n s  in  F i g .  2. The e r r o r s  in  t h e  a p p r o x i m a t e  s o l u t i o n s  
do n o t  e x c e e d  2-3%. 

The d e p e n d e n c e  o f  Un(R, t )  on U ( r ,  t )  i s  e a s i l y  o b t a i n e d  f rom (3)  in  b o t h  t h e  o p e r a t o r  and 
time forms 

dU1 (r, t) 
+ a2[U(r, O--Uo(r ,  O)]+a3 j' [U(r, x ) - -  Uo(r, O)]exp dx,(5)  U~ (R, t) = Un0 (R, O) + al dt o B 

where  ax = C/DB, a2 = [A - ( C / B ) ] I / D B ;  a3 = (1 - a a ) I / D B ,  which  i s  n o t  s a t i s f i e d  s u c c e s s f u l l y  
in  t h e  e x a c t  f o r m u l a t i o n  s i n c e  t h e r e  a r e  no o r i g i n a l s  o f  $ - 1 ( r ,  S ) .  R e l a t i o n s h i p  (5)  p e r m i t s  
a s u f f i c i e n t l y  s i m p l e  s o l u t i o n  o f  i n v e r s e  h e a t -  and m a s s - t r a n s f e r  p r o b l e m s .  An e s s e n t i a l  
d i s t i n c t i o n  in  t h e  o p e r a t o r s  s o l v i n g  t h e  d i r e c t  and i n v e r s e  p r o b l e m s  f o l l o w s  f rom a c o m p a r i s o n  
o f  (2)  and ( 5 ) .  E x a c t  s o l u t i o n s  o f  i n v e r s e  p r o b l e m s  [1] a r e  r e p r e s e n t e d  by i n f i n i t e  s e r i e s  
in  d e r i v a t i v e s  o f  O ( r ,  t ) ,  which  i n d e e d  d e t e r m i n e s  t h e  c o m p l e x i t y  o f  t h e i r  p r a c t i c a l  a p p l i c a -  
t i o n ,  w h i l e  t h e  a p p r o x i m a t e  model  u s e s  j u s t  t h e  f i r s t  d e r i v a t i v e ,  wh ich  can  be d e t e r m i n e d  
f rom e x p e r i m e n t a l  c u r v e s  t o  s u f f i c i e n t  a c c u r a c y .  

For  t h e  c o m p l e t e  s o l u t i o n  o f  t h e  p r o b l e m  i t  i s  n e c e s s a r y  t o  add t h e  a p p r o p r i a t e  bound-  
a r y  c o n d i t i o n s  o f  t h e  s e c o n d ,  t h i r d ,  and f o u r t h  k i n d s  t o  t h e  o b t a i n e d  a p p r o x i m a t e  s o l u t i o n  
o f  t h e  i n t e r n a l  p r o b l e m  in  t h e  fo rm ( 1 ) ,  ( 2 ) ,  ( 3 ) ,  which  r e s u l t s  in  a s y s t e m  o f  e q u a t i o n s  
whose i n t e g r a t i o n  i s  s u b s t a n t i a l l y  s i m p l e r  as  compared  w i t h  t h e  o r i g i n a l s .  I n v e s t i g a t i o n s  
p e r f o r m e d  in  [5 ,  6] d i s p l a y e d  t h e  h i g h  e f f i c i e n c y  o f  t h e  method e l u c i d a t e d .  

NOTATION 

t, time; r, space coordinate vector; S, Laplace transformation variable; R, body surface 
vector; L, Laplace transform operator. 

i. 
2. 

3. 

4. 
5. 

6. 
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